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Abstract

This paper generalizes the M-square and M-vector models [Fong and Fabozzi, Appendix E:

Derivation of Risk Immunization Measures, in: Fixed Income Portfolio Management, Dow

Jones-Irwin, Homewood, IL, pp. 291–294, 1985; Nawalkha and Chambers, Journal of Portfolio

Management, Winter (1997) 92] by using a Taylor series expansion of the bond return function

with respect to specific functions of the cash flow maturities. The classicM-vector computes the

weighted averages of the distance between the maturity of each cash flow and the planning ho-

rizon, raised to integer powers (e.g., ðt � HÞ1; ðt � HÞ2; ðt � HÞ3; . . .). Implementation of the

new approach involves computing the weighted averages of the distance between some function

of the maturity of each cash flow and that of the planning horizon, raised to integer powers

(e.g., ðgðtÞ � gðHÞÞ1; ðgðtÞ � gðHÞÞ2; ðgðtÞ � gðHÞÞ3; . . .). Adopting this approach, this paper

explores six different generalized M-vector models corresponding to six different polynomial

functions, over five different planning horizons from one year to five years. It is shown that gen-

eralized M-vector models corresponding to polynomial functions of lower power provide sig-

nificantly enhanced protection from interest rate risk over short planning horizons.
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1. Introduction

Interest rate immunization against arbitrary non-parallel term structure shifts can

be achieved using two classes of duration models – key-rate duration models and

duration-vector models. 1 Key-rate duration models have been developed by Ho
(1992), Jarrow and Turnbull (1994), and Dattatreya and Fabozzi (1995). These

models develop multiple duration measures by modeling the term structure of inter-

est as a sum of approximately linear segments. Key-rate duration models allow any

number of risk measures, and therefore, in theory, can hedge interest rate risk to any

desired level of precision. However, the number of risk measures to be used and the

corresponding division of the term structure into different key rates remain quite ar-

bitrary under these models. For example, Ho (1992) proposes as many as eleven key

rate durations to effectively hedge against interest rate risk.
Duration vector models use a vector of higher-order duration measures to immu-

nize against changes in the shape parameters of the term structure of interest rates.

Vector models have been developed by Cooper (1977), Chambers (1981), Granito

(1984), Bierwag et al. (1987), Chambers et al. (1988), Prisman and Shores (1988),

Prisman and Tian (1994), Barrett et al. (1995), and Barber and Copper (1996) using

particular functional forms for the term structure or its shifts. Unlike the key-rate

duration models, the duration vector models provide a high level of immunization

performance using only three to five risk measures. More generalized forms of dura-
tion vector models are given by Fong and Fabozzi (1985) and Nawalkha and Cham-

bers (1997). 2 Unlike the traditional duration vector models, the M-square model of

Fong and Fabozzi (1985) and the M-vector model of Nawalkha and Chambers

(1997) do not restrict the term structure shifts to be of a particular functional form.

These models are based upon a Taylor series expansion of the bond return function

with respect to the cash flow maturities around a given planning horizon and lead to

duration measures that are linear in t; t2; t3; . . . where t is the maturity of the cash

flow.
However, since interest rate shifts are generally larger at the shorter end of the

maturity spectrum, its possible that an alternative set of duration measures that

are linear in gðtÞ; gðtÞ2; gðtÞ3; . . ., such that gðtÞm ðm ¼ 1; 2; 3; . . .Þ puts relatively more

weight at the shorter end of the maturity spectrum may give enhanced immunization

protection.

Consistent with this intuition, this paper derives generalized M-vector models

using a Taylor series expansion of the bond return function with respect to specific

functions of the cash flow maturities. Using a change of variable for the Taylor series
expansion, the mth-order element of the generalized M-vector model is derived as a

weighted average of ðgðtÞ � gðHÞÞm where t is the maturity of the cash flow, and H is

the immunization horizon.

1 See Nawalkha and Chambers (1999).
2 These models are derived using a Taylor series approach, which allows the risk measures to be set to

zero. In contrast, the M-square model of Fong and Vasicek (1984) and the M-absolute model of Nawalkha

and Chambers (1996) are derived to minimize the risk measures subject to portfolio constraints.
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In order to empirically investigate the generalized M-vector models, we perform

empirical tests on a class of polynomial functions given as gðtÞ ¼ ta. Different values

of the parameter a result in different generalized M-vector models. The value of a ¼ 1

corresponds to the case of the classic M-vector where the distance between the ma-

turity of each cash flow and planning horizon is raised to integer powers (e.g.,
ðt � HÞ1; ðt � HÞ2; ðt � HÞ3; . . .). Other values of a are equivalent to cases where

the distance between some polynomial function of the maturity of each cash flow

and that of the planning horizon, is raised to integer powers (e.g., a ¼ 0:5 produces

ðt0:5 � H 0:5Þ1; ðt0:5 � H 0:5Þ2; ðt0:5 � H 0:5Þ3; . . .).
We test six different generalized M-vector models corresponding to six different

values of a given as 0.25, 0.50, 0.75, 1, 1.25, and 1.5 over five different horizons of

one year, two years, three years, four years, and five years. Using McCulloch term

structure data over 1950–1990 to form bond portfolios that are rebalanced annually,
we find that generalized higher-order M-vector strategies with lower (higher) a signif-

icantly outperform (underperform) the classic M-vector strategy over short planning

horizons, but these strategies are insignificantly different from the classic M-vector

strategy over long horizons.

The rest of the paper is organized as follows: Section 2 derives the generalized

M-vector models; Section 3 presents the data, methodology and results of the empir-

ical tests; Section 4 concludes the paper.

2. The generalized M-vector models

Consider a bond portfolio at time t ¼ 0 with Ct as the payment on the portfolio at

time t ðt ¼ tð1Þ; tð2Þ; . . . ; tðNÞÞ. Let the continuously compounded instantaneous for-

ward rate function at time t ¼ 0 be given by iðtÞ. Now allow an instantaneous shift in

forward rates from iðtÞ to i0ðtÞ such that i0ðtÞ ¼ iðtÞ þ DiðtÞ. The return on the bond

portfolio between t ¼ 0 and t ¼ H can be given as

RðHÞ ¼ TH � P0

P0

ð1Þ

where

P0 ¼
XtðNÞ

t¼tð1Þ
CtWt

is the value of the bond portfolio at t ¼ 0;

Wt ¼ exp

�
�
Z t

0

iðsÞds

�

is the discount function;

TH ¼
XtðNÞ

t¼tð1Þ
Ct � exp

Z H

t
i0ðsÞds

� �

is the terminal value of the portfolio.
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Substituting the definitions of P0 and TH into Eq. (1) gives

RðHÞ ¼ exp

Z H

0

iðsÞds

� � XtðNÞ

t¼tð1Þ
Ct � Wt � f ðtÞ

" #"
� P0

#,
P0 ð2Þ

where f ðtÞ ¼ exp
R H
t DiðsÞds

h i
.

Using a change of variable, let the forward rate function iðtÞ be represented by a
chain function given as

iðtÞ ¼ hðgðtÞÞ ð3Þ

where gðtÞ is a continuously differentiable function of t. Further assume that gðtÞ is

monotonic and the inverse function of gðtÞ exists and is given as

t ¼ g�1ðgÞ ¼ kðgÞ: ð4Þ

The instantaneous change in the forward rate function can be given as

DiðtÞ ¼ DhðgðtÞÞ: ð5Þ

Using Eqs. (4) and (5), we have

f ðtÞ ¼ exp

Z H

t
DiðsÞds

� �
¼ exp

Z gðHÞ

gðtÞ
pðcÞdc

" #
¼ rðgðtÞÞ ð6Þ

where

pðgðtÞÞ ¼ DhðgðtÞÞ � oðkðgÞÞ
og

: ð7Þ

Doing a Taylor series expansion of rðgðtÞÞ around gðHÞ, f ðtÞ can be represented

as

f ðtÞ ¼ rðgðtÞÞ
¼ 1� ½gðtÞ � gðHÞ	 � pðgðHÞÞ

� 1

2
½gðtÞ � gðHÞ	2 � oðpðgÞÞ

og

�
� ½pðgÞ	2

�
g¼gðHÞ

� 1

3!
½gðtÞ � gðHÞ	3 � ½pðgÞ	3

�
� 3 � pðgÞ oðpðgÞÞ

og
þ o2ðpðgÞÞ

og2

�
g¼gðHÞ

þ � � � þ

� 1

Q!
½gðtÞ � gðHÞ	Q � ð

�
�1ÞQþ1½pðgÞ	Q þ � � � þ oQ�1ðpðgÞÞ

ogQ�1

�
g¼gðHÞ

þ � � � þ remainder:

ð8Þ

For a reasonably large number Q, the first Qþ 1 terms of the above equation may

approximate the value of rðgðtÞÞ well. Eq. (8) can be written in a simplified form as
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f ðtÞ ¼ rðgðtÞÞ ¼ 1þ
XQ
m¼1

½gðtÞ � gðHÞ	m � Zm þ eðtÞ ð9Þ

where

Z1 ¼ �pðgðHÞÞ;

Z2 ¼ � 1

2
� oðpðgÞÞ

og

�
� ½pðgÞ	2

�
g¼gðHÞ

;

Z3 ¼ � 1

3!
� ½pðgÞ	3
�

� 3 � pðgÞ oðpðgÞÞ
og

þ o2ðpðgÞÞ
og2

�
g¼gðHÞ

;

..

.

ZQ ¼ � 1

Q!
� ð
�
�1ÞQþ1½pðgÞ	Q þ � � � þ oQ�1ðpðgÞÞ

ogQ�1

�
g¼gðHÞ

:

The expression eðtÞ is the error term due to higher-order Taylor series terms.

Eq. (7) shows that the value of pðgÞ depends on the change in the forward rate

function. In particular, if the forward rate function does not change, pðgðHÞÞ equals
zero and therefore Zm ¼ 0 for all m ¼ 1; 2; . . . ;Q. In this case, f ðtÞ ¼ rðgðtÞÞ ¼ 1, and

the return on the portfolio is riskless. Substituting f ðtÞ ¼ 1 into Eq. (2), the riskless

return between time 0 and H is given as

RF ðHÞ ¼ exp

Z H

0

iðsÞds

� �
� 1: ð10Þ

If forward rates do change, the bond portfolio return will be different from the

riskless return. The bond portfolio return can be obtained by substituting Eq. (9)

into Eq. (2), which gives

RðHÞ ¼ RF ðHÞ þ ½1þ RF ðHÞ	 �
XQ
m¼1

ZmMm þ eR ð11Þ

where eR is the error term due to higher-order Taylor series terms, RF ðHÞ is the
riskless return defined in Eq. (10), and Mm is the mth measure of the generalized

M-vector corresponding to a given function gðtÞ for all m ¼ 1; 2; . . . ;Q. The mth

measure is of the following form:

Mm ¼
XtðNÞ

t¼tð1Þ
Ct � Wt � ½gðtÞ

"
� gðHÞ	m=P0

#
: ð12Þ

The portfolio return can be rewritten as

RðHÞ ¼ RF ðHÞ þM � Y0 þ eR ð13Þ
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where

M ¼ jM1;M2; . . . ;MQj;
Y ¼ jY1; Y2; . . . ; YQj and

Ym ¼ ð1þ RF ðHÞÞ � Zm for all m ¼ 1; 2; . . . ;Q:

Eq. (13) allows us to separate the total return of a default free bond portfolio into

two parts. The first part is the riskless return RF ðHÞ. The second part is the unex-

pected return due to the instantaneous change in the forward rates. The unexpected
return can be considered as the composite result of two effects: the shift vector Y

which measures the impact of the changes in forward rates at the planning horizon

H , and the generalized M-vector M which is determined by the maturity character-

istics of the bond portfolio. The separation of the forward rate changes (captured by

the shift vector) and the maturity characteristics (captured by the generalized M-

vector) makes it possible to immunize a bond portfolio from unexpected changes

in the forward rates. This is achieved by equating the generalized M-vector M to a

vector of zeros.
Eq. (13) is very general and allows flexibility in choosing various functional forms

of gðtÞ. In this paper, we test a class of polynomial functions given by gðtÞ ¼ ta for six

different values of a equal to 0.25, 0.5, 0.75, 1, 1.25, and 1.5, respectively. We choose

the polynomial function for two reasons. First, because of its simplicity, and second,

for a range of positive values of alpha (i.e., 0 < a < 1), the polynomial function has

some desirable properties given as follows. When Q ¼ 1, the specific values of a be-

tween 0 and 1 imply that duration of zero coupon bonds is increasing, though at a

decreasing rate, or dgðtÞ=dt > 0 and d2gðtÞ=dt2 < 0. This property is also satisfied by
all known term structure models with mean reversion that allow short rates to move

more than long rates (e.g., Vasicek, 1977; Cox et al., 1985). On the other hand, values

of a greater than 1 imply that duration of zero coupon bonds is increasing at an in-

creasing rate (i.e., d2gðtÞ=dt2 > 0). In the context of term structure models, this can

happen only under mean aversion implying short rates move less than long rates.

Though the generalized M-vector models do not require the restrictive assump-

tions of the term structure models (since Q may be greater than 1, allowing more fac-

tors and moments of forward rate changes), it is still important to note these
relations in order to explore potential functional forms for gðtÞ, which remain con-

sistent with the basic term structure literature under the special case.

An intuitive reason for preferring values of a between 0 and 1, to values of a greater

than 1 is as follows. Duration vector models derived from Taylor series expansion

lead to duration measures that are linear in t; t2; t3; . . . However, since interest rate

shifts are generally larger at the shorter end of the maturity spectrum, its possible that

an alternative set of duration measures that are linear in gðtÞm (for m ¼ 1; 2; 3; . . .),
such that gðtÞm puts relatively more weight at the shorter end of the maturity spectrum
may give enhanced immunization protection for increasing values of Q. Mathemati-

cally, this condition can be expressed as gðsÞm=gðtÞm < sm=tm, for m ¼ 1; 2; 3; . . .,
where s > t. It can be verified that for the polynomial function gðtÞ ¼ ta, this condi-

tion is satisfied only when a < 1.
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Finally, the reason we do not consider negative values of a is because they imply

that the corresponding first-order duration measure is decreasing with bond matu-

rity, and hence, when Q ¼ 1 the zero coupon bond volatility must decrease with in-

creasing maturity, which is obviously not true.

3. Empirical tests

In this section, we perform a set of empirical tests over the observation period

1950 through 1990 to examine the immunization performance of alternative M-vec-

tor models corresponding to gðtÞ ¼ ta with six different values of a: 0.25, 0.5, 0.75, 1,
1.25 and 1.5.

The case of a ¼ 1 is equivalent to the case of the classic M-vector where the dis-
tance between the maturity of each cash flow and the planning horizon is raised to

integer powers (e.g., ðt � HÞ1; ðt � HÞ2; ðt � HÞ3; . . .). Nawalkha and Chambers

(1997) provide empirical evidence supporting this model using a planning horizon

of four years. Our empirical tests not only confirm their findings, but also extend

their model by considering other values of a equivalent to cases where the distance

between some polynomial function of the maturity of each cash flow and that of the

planning horizon, is raised to integer powers (e.g., a ¼ 0:5 produces ðt0:5 � H 0:5Þ1;
ðt0:5 � H 0:5Þ2; ðt0:5 � H 0:5Þ3; . . .). Further, the generalized M-vector models are tested
against the classic M-vector using an increasing number of immunization constraints

(i.e., Q ranging from 1 to 5) 3 over five different planning horizons of one year, two

years, three years, four years, and five years.

3.1. Data

The empirical tests are based upon the McCulloch US Treasury term structure

data. The zero-coupon yields of various maturities for period 1947 through 1991

are derived by McCulloch and Kwon (1993) using a broad spectrum of government

bond prices. 4 This data set has been used before for empirical studies on bond im-

munization (see Elton et al., 1990; Nawalkha and Chambers, 1997).

The immunization tests use the zero-coupon yields with maturities ranging from
one year through seven years. The yields are recorded on December 31 of each year

from 1950 to 1990. Thirty-one coupon bonds with annual coupon payments are con-

structed using the zero-coupon yields. The coupon bonds have seven maturities

(1; 2; 3; . . . ; 7 years), and there are five different coupon rates (6%, 8%, 10%, 12%

and 14%) for each maturity. 5

3 Higher values of Q would result in a high sensitivity of the results to round-off errors.
4 For details of the term structure estimation, see McCulloch (1971, 1975) and Kwon (1992).
5 Since coupons are paid annually, all the one-year maturity coupon bonds collapse to a single one-year

zero-coupon bond regardless of the coupon rate.
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3.2. Methodology

For each planning horizon of length H , the sample period beginning December

31, 1950 through December 31, 1990 is divided into 41� H number of H -year plan-

ning periods. For example, for H ¼ 2, the sample period is divided into 39 over-
lapping two-year planning periods, given as 1950–1952; 1951–1953; . . . ; 1988–1990.
Similarly, for H ¼ 5, the sample period is divided into 36 overlapping five-year plan-

ning periods, given as 1950–1955; 1951–1956; . . . ; 1985–1990. 6 Given a specific plan-

ning horizon, a separate portfolio with an initial value of $1 is formed at the

beginning of each planning period (i.e., on December 31 of each year) corresponding

to the six different functional forms of gðtÞ (i.e., the six values of a: 0.25, 0.5, 0.75, 1,
1.25 and 1.5) and the five generalized M-vector lengths (i.e., Q ranging from 1 to 5).

Since there are an infinite number of portfolios that would satisfy the constraints of
each immunization strategy, we select a unique bond portfolio corresponding to each

strategy by optimizing the following quadratic function:

Min
XJ

i¼1

p2
i

" #
ð14Þ

subject to:

XJ

i¼1

piMm
i ¼ 0 for all m ¼ 1; 2; . . . ;Q; and

XJ

i¼1

pi ¼ 1

ð15Þ

where J ¼ 31 is the number of bonds in the portfolio and pi is the proportion of the

total wealth invested in the ith bond.

The objective function in (14) is used for achieving diversification across all
bonds. The portfolios are rebalanced on December 31 of each year when annual cou-

pons are paid. At the end of the H -year planning period, the terminal values of each

of the portfolios corresponding to different functional forms of gðtÞ and different

lengths of the generalized M-vector model are compared with the target riskless re-

turn earned from holding a H -year zero-coupon bond issued at the beginning of the

planning period. The deviations of the portfolio actual terminal values from the tar-

get terminal values are used to evaluate the effectiveness of immunization strategies

under the different generalized M-vector models.
In order to evaluate the statistical significance of the improvement (or deteriora-

tion) of immunization performance, we carry out two non-parametric tests for re-

lated samples on the series of absolute deviations of actual values from target

6 Since the portfolios are rebalanced at the end of each year, H ¼ 1 gives 40 non-overlapping 1-year

periods given as 1950–1951; 1951–1952; . . . ; 1989–1990.
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values from each generalized M-vector strategy with respect to the corresponding

deviations from the classic M-vector strategy.

The first non-parametric test that we apply to our data is the sign test, which has

been previously used in the immunization literature by Bierwag et al. (1993), and

Fooladi and Roberts (1992). The sign test determines whether the percentage of
planning periods in which each strategy outperforms the classic M-vector strategy

is significantly different from a randomly expected outcome of 50%.

To gain more confidence in our results, we also apply the Wilcoxon signed-rank

test, which is a non-parametric alternative to the paired samples t-test. This test

complements the results of the sign test by taking into account, not only the sign,

but also a comparison of the magnitudes of the absolute deviations from each strat-

egy with the magnitudes of the corresponding deviations from the classic M-vector

strategy. This test ranks the absolute differences between the absolute deviations
from both strategies, and compares the sum of the ranks corresponding to the cases

where the generalized M-vector strategy deviations are lower than the classic M-

vector strategy deviations (negative ranks) to the sum of ranks corresponding to

the opposite cases (positive ranks). The null hypothesis is that if both strategies per-

form similarly, the sum of ranks from both strategies must be approximately

equal. 7

3.3. Results

The results from the immunization tests are divided into two subsections. Section

3.3.1 reports a comparison of the deviations of actual portfolio values from target

portfolio values from the generalized M-vector strategies against the deviations from

the classic M-vector strategy for different vector lengths ranging from Q ¼ 1 to Q ¼ 5

over a planning horizon of three years. Section 3.3.2 uses the two non-parametric
tests to assess the statistical significance of the improvement (or deterioration) in

the immunization performance of generalized M-vector models over the classic M-

vector model. All tests are repeated over different lengths of planning horizons

(H ¼ 1, 2, 3, 4 and 5 years). Repeating these tests over different planning horizons

provides evidence of improvement in immunization performance, not only in a sta-

tistical sense, but also in an economic sense for the case when planning horizons are

short. Finally, we provide an empirical insight based upon portfolio design that ex-

plains why the generalized M-vector models corresponding to polynomial functional
forms with low alphas provide enhanced immunization performance over short plan-

ning horizons.

3.3.1. Immunization performance of the generalized M-vector models: A first look

Table 1 provides a first look at the immunization performance of the generalized

M-vector models over the classic M-vector model for different vector lengths ranging

7 For both the sign test and the Wilcoxon signed-rank test we ignore ties between deviations because

none was found with a precision of ten digits.
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from Q ¼ 1 to Q ¼ 5 when the length of the planning horizons is set to three years. 8

This table gives the sums of absolute deviations and the sums of negative devia-

tions 9 of portfolio terminal values from the corresponding target values for the

six functional forms of gðtÞ as a percentage of the same sums for the classic M-vector

model (i.e., with gðtÞ ¼ t). The figures correspond to the sub-period 1950–1970
(Panel A), the higher volatility sub-period 1970–1990 (Panel B), and the whole pe-

riod 1950–1990 (Panel C).

Inspection of the results for Q ¼ 1 reveals that the three models gðtÞ ¼ t0:5,
gðtÞ ¼ t0:75 and gðtÞ ¼ t have similar performance over the whole period, while the

remaining three models gðtÞ ¼ t0:25, gðtÞ ¼ t1:25 and gðtÞ ¼ t1:5 perform worse over

the whole period. When we examine the performance of the models in the separate

sub-periods (Panel A and Panel B, respectively), we find that over the period 1950–

1970, the models with a less than 1 outperform the models with a greater or equal to
1, but over period 1970–1990, the model gðtÞ ¼ t outperforms all other models.

Hence, in this case, the findings are consistent with the previous research, that the

immunization performance of the Macaulay duration model (i.e., using gðtÞ ¼ t)
is about as effective as that of other alternative single factor duration models (see,

Bierwag et al., 1981; Brennan and Schwartz, 1983; Nelson and Schaefer, 1983;

Gultekin and Rogalski, 1984).

When higher-order generalized M-vectors (corresponding to Q ¼ 2, Q ¼ 3, Q ¼ 4,

and Q ¼ 5) are used, Table 1 shows that the lower a models generally outperform the
classic model (i.e., with a ¼ 1) as well as other higher a models based upon the sum

of absolute deviations. This holds for the both sub-periods and the whole sample pe-

riod. This improvement in immunization performance seems very significant when

Q ¼ 5. The evidence considering the sum of negative deviations is more mixed, which

reveals that the distribution of deviations is not symmetrical in this case. Over the

whole period, the immunization performance does improve for lower alpha strate-

gies with vector lengths of Q ¼ 2, Q ¼ 4, and Q ¼ 5, but the classic M-vector per-

forms as well as other strategies for Q ¼ 3.
Though a pattern exists between the size of a and the immunization perfor-

mance, this may not be sufficient for assessing whether the improvement (deteriora-

tion) in performance is statistically and/or economically significant. Also, the results

shown are specific to the three-year planning horizon and may or may not hold at

shorter or longer horizons. These important issues are addressed in the following

section.

8 Section 3.3.2 provides summary results and statistical tests for other planning horizons including, 1, 2,

3, 4, and 5 years.
9 Absolute deviations can assess the immunization performance regardless of whether the immunizing

portfolio represents a long position (managing assets to fund a known liability) or a short position (to

hedge a liability portfolio against a known future cash inflow). Negative deviations are not valid for

assessing the immunization performance of a portfolio that represents an overall short position (e.g.,

certain financial institutions with liability portfolios and hedge funds).
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Table 1

Deviations of actual values from target values for generalized M-vector strategies as a percentage of the

deviations for the classic M-vector strategy over three-year horizons

gðtÞ ¼ t0:25 gðtÞ ¼ t0:5 gðtÞ ¼ t0:75 gðtÞ ¼ t gðtÞ ¼ t1:25 gðtÞ ¼ t1:5

Panel A: Observation period 1950–1970

Q ¼ 1

Absolute deviations 68.44 59.56 76.45 100.00 120.95 140.11

Negative deviations 46.45 35.29 62.07 100.00 135.73 170.07

Q ¼ 2

Absolute deviations 83.64 79.73 82.39 100.00 134.82 182.42

Negative deviations 137.18 113.88 95.86 100.00 133.28 191.31

Q ¼ 3

Absolute deviations 77.38 75.53 80.28 100.00 132.48 219.89

Negative deviations 94.48 95.69 96.03 100.00 103.45 152.93

Q ¼ 4

Absolute deviations 52.27 71.20 91.47 100.00 106.67 176.27

Negative deviations 48.66 67.05 88.51 100.00 100.77 127.97

Q ¼ 5

Absolute deviations 19.10 33.71 55.06 100.00 135.96 202.25

Negative deviations 12.50 26.79 50.00 100.00 142.86 205.36

Panel B: Observation period 1970–1990

Q ¼ 1

Absolute deviations 155.81 126.35 105.12 100.00 104.24 126.29

Negative deviations 175.89 138.62 110.31 100.00 100.26 120.69

Q ¼ 2

Absolute deviations 57.45 55.79 72.04 100.00 123.26 149.55

Negative deviations 66.30 61.91 75.34 100.00 118.77 140.30

Q ¼ 3

Absolute deviations 85.78 85.78 92.71 100.00 121.62 167.68

Negative deviations 98.10 95.97 99.35 100.00 112.87 149.29

Q ¼ 4

Absolute deviations 70.77 79.48 90.26 100.00 111.35 124.44

Negative deviations 79.97 87.31 95.04 100.00 103.37 103.70

Q ¼ 5

Absolute deviations 35.16 49.61 70.33 100.00 134.54 172.68

Negative deviations 24.52 41.60 66.12 100.00 136.91 171.63

Panel C: Summary for period 1950–1990

Q ¼ 1

Absolute deviations 118.57 100.16 94.26 100.00 110.46 131.08

Negative deviations 130.02 105.38 95.71 100.00 110.18 132.61

Q ¼ 2

Absolute deviations 65.96 63.77 74.68 100.00 128.19 165.24

Negative deviations 78.33 71.92 78.53 100.00 124.09 158.03

Q ¼ 3

Absolute deviations 85.22 83.04 88.88 100.00 122.12 174.36

Negative deviations 107.43 99.88 98.50 100.00 110.84 152.94

Q ¼ 4

Absolute deviations 72.52 83.38 93.90 100.00 110.22 128.02

Negative deviations 81.23 91.48 99.23 100.00 98.91 98.09

(continued on next page)
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3.3.2. Non-parametric tests of immunization performance

This section uses two non-parametric tests to assess the statistical significance of

the improvement (or deterioration) in the immunization performance of generalized

M-vector strategies over the classic M-vector strategy. All tests are repeated over dif-

ferent lengths of planning horizons of 1, 2, 3, 4, and 5 years. This extends our basic

results in Section 3.3.1, which were specific to a three-year planning horizon. We also

find that repeating these tests over different planning horizons provides some evi-

dence of improvement in immunization performance, not only in a statistical sense,
but also in an economic sense.

The results of two non-parametric tests are presented in Tables 2–6 corresponding

to planning horizons of increasing lengths of 1, 2, 3, 4, and 5 years. Each table re-

ports the non-parametric tests of improvement (or deterioration) in the immuniza-

tion performance of 25 different strategies (5� 5 corresponding to different values

of a ¼ 0:25, 0.5, 0.75, 1.25, and 1.5, and different values of Q ¼ 1, 2, 3, 4, and 5) over

the corresponding five classic M-vector strategies (i.e., a ¼ 1, and different values of

Q ¼ 1, 2, 3, 4, and 5).
Each table is subdivided into five panels (Panel A to Panel E) corresponding to

increasing lengths of the generalized M-vector model (Q). Each panel reports the

sum of absolute deviations of actual portfolio values from target values over the

whole sample period. The sum of absolute deviations is also expressed as a percent-

age of the corresponding sum for the classic M-vector model. Following these sum-

mary statistics, the panel gives the results from the two non-parametric tests. 10

The first non-parametric test measure corresponds to the sign test and gives the

percentage of cases for which the absolute deviations of actual values from target
values are lower than those of the classic M-vector model. The second non-paramet-

ric test measure corresponds to the Wilcoxon signed-rank test, which ranks the

Table 1 (continued)

gðtÞ ¼ t0:25 gðtÞ ¼ t0:5 gðtÞ ¼ t0:75 gðtÞ ¼ t gðtÞ ¼ t1:25 gðtÞ ¼ t1:5

Q ¼ 5

Absolute deviations 30.97 46.10 68.67 100.00 132.77 166.27

Negative deviations 21.37 38.83 65.03 100.00 134.35 160.94

This table reports the sum of absolute deviations and the sum of negative deviations of portfolio actual

values from target values for each generalized M-vector strategy as a percentage of the corresponding sums

for the classicM-vector strategy (i.e., with gðtÞ ¼ t). The length of the planning horizon is three years. Each

of the two sub-periods is comprised of 18 overlapped planning periods of three years (and thus, 18 separate

portfolios with an initial value of $1) and the whole period 1950–1990 is comprised of 38 overlapped

planning periods of the same length. Percentages lower than 100% are marked with gray cells.

10 Focusing in negative deviations would result in an undesired observation reduction in the tests. Non-

parametric tests of performance comparison using absolute deviations between effective and target returns

(which are similar to our absolute deviations between effective and target terminal values – see footnote 9)

have been also done by Bierwag et al. (1993) and Fooladi and Roberts (1992). Due to space constraints we

report the tests only for the whole sample period.
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differences between the absolute deviations from the generalized M-vector strategy

and the classic M-vector strategy. Shown are the sum of the ranks corresponding

to the cases where the absolute deviations from the generalized M-vector strategy

are lower than the absolute deviations from the classic M-vector strategy (negative

ranks), and the sum of ranks corresponding to the opposite cases (positive ranks).
Asterisks accompanying the values of these two statistical measures of immunization

performance indicate whether the specific generalized M-vector strategy performs

different than (either better or worse) the classic M-vector strategy at 1% (**) or

5% (*) levels of statistical significance. 11

Interesting patterns emerge as we inspect the results shown in Tables 2–6. First,

the lower alpha generalized M-vector strategies outperform the classic M-vector

strategy more frequently when the planning horizon is short. In fact, for the plan-

ning horizon of five years (see Table 6) and beyond, there is no evidence of
improvement in immunization performance using the alternative M-vector strate-

gies. 12 Later in this section, we provide some insights based on portfolio design

that may partially explain the dependence of our results on the length of the plan-

ning horizon.

Table 2 reports the results corresponding to the shortest planning horizon of one

year in our data set. Consistent with our previous results for the three-year horizon

(in Table 1), we find no evidence of improvement in immunization performance

when only a single M-vector constraint is used, once again confirming that the tra-
ditional duration is as good as any other single factor model. However, for all higher

Qs there is consistent evidence of improvement (deterioration) in immunization per-

formance at statistically significant levels for all generalized M-vector strategies with

a less than one (with a more than 1). The improvement generally continues as a gets

lower, and Q gets higher. However, it is important to point out that the significant

improvement in immunization performance for low alpha strategies with Q ¼ 5

may not be as relevant in an economic sense as it is in a statistical sense. This is be-

cause for Q ¼ 5, the deviations are so low even for the classic M-vector model that
further improvements may not be economically meaningful. However, for lower val-

ues of Q (especially for Q ¼ 2 and 3 and possibly for Q ¼ 4), gains in immunization

performance are economically relevant. Of course, economic relevance can be as-

sessed only in a relative sense, since what may be economically significant for a finan-

cial institution with hundreds of billions in assets and/or liabilities, may not be

significant for institutions with a smaller monetary base.

As the length of the horizon increases we continue to find statistical evidence of

improvement in immunization performance for generalized M-vector strategies with

11 For example, a percentage of cases higher than 50% and marked by an asterisk indicates that the

strategy performs statistically better than the classic M-vector strategy. On the other hand, a Sum of

ranks � marked by an asterisk and where the sum of negative ranks is higher than the sum of positive

ranks points to the same conclusion.
12 The results for H ¼ 6 and 7 years can be obtained from the authors. These results show no evidence

of improvement in immunization performance using alternative M-vector strategies, similar to reported in

Table 6 for the case of H ¼ 5.
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Table 2

Immunization performance of the generalized M-vector model with gðtÞ ¼ ta over one-year horizons

Variable gðtÞ ¼ t0:25 gðtÞ ¼ t0:5 gðtÞ ¼ t0:75 gðtÞ ¼ t gðtÞ ¼ t1:25 gðtÞ ¼ t1:5

Panel A: Q ¼ 1

Sum of absolute

deviations

0.31680 0.25987 0.23972 0.26489 0.32648 0.39565

As percentage of gðtÞ ¼ t 119.60 98.11 90.50 100.00 123.25 149.36

% of cases abs. dev. lower

than gðtÞ ¼ t
52.50 62.50 67.50 20.00 17.50

Sum of ranks � 371/449 475/345 547/273 130/690 103/717

Panel B: Q ¼ 2

Sum of absolute

deviations

0.05216 0.05454 0.06786 0.09108 0.12504 0.17149

As percentage of gðtÞ ¼ t 57.27 59.88 74.51 100.00 137.29 188.30

% of cases abs. dev. lower

than gðtÞ ¼ t
60.00 57.50 57.50 32.50 25.00

Sum of ranks � 581/239 591/229 574/246 180/640 119/701

Panel C: Q ¼ 3

Sum of absolute

deviations

0.01687 0.02252 0.02687 0.03506 0.05384 0.08512

As percentage of gðtÞ ¼ t 48.11 64.25 76.66 100.00 153.60 242.82

% of cases abs. dev. lower

than gðtÞ ¼ t
75.00 67.50 65.00 20.00 12.50

Sum of ranks � 679/141 623/197 613/207 95/725 59/761

Panel D: Q ¼ 4

Sum of absolute

deviations

0.00287 0.00558 0.00986 0.01527 0.02090 0.02883

As percentage of gðtÞ ¼ t 18.81 36.57 64.55 100.00 136.89 188.84

% of cases abs. dev. lower

than gðtÞ ¼ t
97.50 92.50 90.00 22.50 17.50

Sum of ranks � 816/4 808/12 800/20 129/691 144/676

Panel E: Q ¼ 5

Sum of absolute

deviations

0.00010 0.00026 0.00070 0.00179 0.00412 0.00844

As percentage of gðtÞ ¼ t 5.59 14.27 39.39 100.00 230.46 471.84

% of cases abs. dev. lower

than gðtÞ ¼ t
95.00 90.00 87.50 10.00 7.50

Sum of ranks � 808/12 788/32 762/58 33/787 15/805

This table reports different measures of the performance of 30 immunization strategies over 40 horizons of

one year in the period 1950–1990. Each strategy is a result of combining a functional form of gðtÞ with a

generalized M-vector length (Q). Sum of ranks � gives the sum of the ranks of the negative differences

between the absolute deviations yielded by each strategy and those of the classic M-vector strategy and the

sum of the ranks of the positive differences between both series. Asterisks accompanying the % of cases

each strategy absolute deviation is lower than that of gðtÞ ¼ t indicate that the strategy performs statistically

different from the classic M-vector strategy at 1% (**) or 5% (*) levels by means of a sign test on absolute

deviations. Asterisks accompanying the Sum of ranks � indicate that the strategy performs statistically

different from the M-vector strategy at the preceding significance levels by means of a Wilcoxon test on

absolute deviations.
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Table 3

Immunization performance of the generalized M-vector model with gðtÞ ¼ ta over two-year horizons

Variable gðtÞ ¼ t0:25 gðtÞ ¼ t0:5 gðtÞ ¼ t0:75 gðtÞ ¼ t gðtÞ ¼ t1:25 gðtÞ ¼ t1:5

Panel A: Q ¼ 1

Sum of absolute

deviations

0.35384 0.28471 0.25664 0.27921 0.34448 0.42578

As percentage of gðtÞ ¼ t 126.73 101.97 91.92 100.00 123.37 152.49

% of cases abs. dev. lower

than gðtÞ ¼ t
46.15 56.41 66.67 17.95 12.82

Sum of ranks � 330/450 425/355 501/279 127/653 80/700

Panel B: Q ¼ 2

Sum of absolute

deviations

0.07234 0.06960 0.07929 0.09628 0.12552 0.16853

As percentage of gðtÞ ¼ t 75.13 72.28 82.35 100.00 130.37 175.03

% of cases abs. dev. lower

than gðtÞ ¼ t
51.28 58.97 56.41 41.03 30.77

Sum of ranks � 455/325 516/264 523/257 206/574 155/625

Panel C: Q ¼ 3

Sum of absolute

deviations

0.02688 0.03288 0.03746 0.04407 0.05874 0.08688

As percentage of gðtÞ ¼ t 60.99 74.60 84.99 100.00 133.29 197.13

% of cases abs. dev. lower

than gðtÞ ¼ t
71.79 64.10 66.67 28.21 17.95

Sum of ranks � 570/210 543/237 543/237 147/633 82/698

Panel D: Q ¼ 4

Sum of absolute

deviations

0.00632 0.00895 0.01264 0.01657 0.02439 0.03666

As percentage of gðtÞ ¼ t 38.14 53.99 76.28 100.00 147.19 221.21

% of cases abs. dev. lower

than gðtÞ ¼ t
71.79 66.67 58.97 23.08 15.38

Sum of ranks � 605/175 577/203 541/239 116/664 65/715

Panel E: Q ¼ 5

Sum of absolute

deviations

0.00044 0.00087 0.00166 0.00329 0.00566 0.00927

As percentage of gðtÞ ¼ t 13.24 26.31 50.29 100.00 171.75 281.48

% of cases abs. dev. lower

than gðtÞ ¼ t
100.00 94.87 94.87 28.21 20.51

Sum of ranks � 780/0 775/5 761/19 125/655 99/681

This table reports different measures of the performance of 30 immunization strategies over 39 horizons of

two years in the period 1950–1990. Each strategy is a result of combining a functional form of gðtÞ with a

generalized M-vector length (Q). Sum of ranks � gives the sum of the ranks of the negative differences

between the absolute deviations yielded by each strategy and those of the classic M-vector strategy and the

sum of the ranks of the positive differences between both series. Asterisks accompanying the % of cases

each strategy absolute deviation is lower than that of gðtÞ ¼ t indicate that the strategy performs statistically

different from the classic M-vector strategy at 1% (**) or 5% (*) levels by means of a sign test on absolute

deviations. Asterisks accompanying the Sum of ranks � indicate that the strategy performs statistically

different from the M-vector strategy at the preceding significance levels by means of a Wilcoxon test on

absolute deviations.
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Table 4

Immunization performance of the generalized M-vector model with gðtÞ ¼ ta over three-year horizons

Variable gðtÞ ¼ t0:25 gðtÞ ¼ t0:5 gðtÞ ¼ t0:75 gðtÞ ¼ t gðtÞ ¼ t1:25 gðtÞ ¼ t1:5

Panel A: Q ¼ 1

Sum of absolute

deviations

0.42331 0.35757 0.33653 0.35701 0.39435 0.46796

As percentage of gðtÞ ¼ t 118.57 100.16 94.26 100.00 110.46 131.08

% of cases abs. dev.

lower than gðtÞ ¼ t
52.63 65.79 65.79 31.58 23.68

Sum of ranks � 373/368 438/303 456/285 252/489 176/565

Panel B: Q ¼ 2

Sum of absolute

deviations

0.08126 0.07856 0.09200 0.12320 0.15793 0.20358

As percentage of gðtÞ ¼ t 65.96 63.77 74.68 100.00 128.19 165.24

% of cases abs. dev.

lower than gðtÞ ¼ t
73.68 71.05 76.32 39.47 31.58

Sum of ranks � 578/163 573/168 588/153 204/537 178/563

Panel C: Q ¼ 3

Sum of absolute

deviations

0.04277 0.04168 0.04461 0.05019 0.06129 0.08751

As percentage of gðtÞ ¼ t 85.22 83.04 88.88 100.00 122.12 174.36

% of cases abs. dev.

lower than gðtÞ ¼ t
55.26 57.89 57.89 36.84 26.32

Sum of ranks � 439/302 458/283 462/279 224/517 141/600

Panel D: Q ¼ 4

Sum of absolute

deviations

0.02151 0.02473 0.02785 0.02966 0.03269 0.03797

As percentage of gðtÞ ¼ t 72.52 83.38 93.90 100.00 110.22 128.02

% of cases abs. dev.

lower than gðtÞ ¼ t
68.42 57.89 47.37 39.47 39.47

Sum of ranks � 535/206 470/271 397/344 322/419 273/468

Panel E: Q ¼ 5

Sum of absolute

deviations

0.00258 0.00384 0.00572 0.00833 0.01106 0.01385

As percentage of gðtÞ ¼ t 30.97 46.10 68.67 100.00 132.77 166.27

% of cases abs. dev.

lower than gðtÞ ¼ t
86.84 84.21 81.58 34.21 26.32

Sum of ranks � 677/64 666/75 650/91 197/544 167/574

This table reports different measures of the performance of 30 immunization strategies over 38 horizons of

three years in the period 1950–1990. Each strategy is a result of combining a functional form of gðtÞ with a

generalized M-vector length (Q). Sum of ranks � gives the sum of the ranks of the negative differences

between the absolute deviations yielded by each strategy and those of the classic M-vector strategy and the

sum of the ranks of the positive differences between both series. Asterisks accompanying the % of cases

each strategy absolute deviation is lower than that of gðtÞ ¼ t indicate that the strategy performs statistically

different from the classic M-vector strategy at 1% (**) or 5% (*) levels by means of a sign test on absolute

deviations. Asterisks accompanying the Sum of ranks � indicate that the strategy performs statistically

different from the M-vector strategy at the preceding significance levels by means of a Wilcoxon test on

absolute deviations.
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Table 5

Immunization performance of the generalized M-vector model with gðtÞ ¼ ta over four-year horizons

Variable gðtÞ ¼ t0:25 gðtÞ ¼ t0:5 gðtÞ ¼ t0:75 gðtÞ ¼ t gðtÞ ¼ t1:25 gðtÞ ¼ t1:5

Panel A: Q ¼ 1

Sum of absolute

deviations

0.44019 0.37666 0.37532 0.41891 0.48903 0.57266

As percentage of gðtÞ ¼ t 105.08 89.91 89.60 100.00 116.74 136.70

% of cases abs. dev. lower

than gðtÞ ¼ t
59.46 64.86 64.86 32.43 27.03

Sum of ranks � 376/327 432/271 466/237 174/529 142/561

Panel B: Q ¼ 2

Sum of absolute

deviations

0.09011 0.08502 0.09632 0.11834 0.15486 0.21176

As percentage of gðtÞ ¼ t 76.14 71.85 81.39 100.00 130.86 178.95

% of cases abs. dev. lower

than gðtÞ ¼ t
62.16 62.16 59.46 40.54 27.03

Sum of ranks � 449/254 450/253 474/229 215/488 142/561

Panel C: Q ¼ 3

Sum of absolute

deviations

0.03718 0.04463 0.05063 0.05583 0.06532 0.08959

As percentage of gðtÞ ¼ t 66.61 79.94 90.69 100.00 117.01 160.47

% of cases abs. dev. lower

than gðtÞ ¼ t
56.76 64.86 56.76 45.95 35.14

Sum of ranks � 465/238 453/250 422/281 250/453 186/517

Panel D: Q ¼ 4

Sum of absolute

deviations

0.02703 0.02390 0.02199 0.02221 0.02843 0.03640

As percentage of gðtÞ ¼ t 121.66 107.58 99.01 100.00 127.97 163.88

% of cases abs. dev. lower

than gðtÞ ¼ t
45.95 37.84 51.35 37.84 29.73

Sum of ranks � 269/434 285/418 346/357 250/453 210/493

Panel E: Q ¼ 5

Sum of absolute

deviations

0.00777 0.00982 0.01202 0.01567 0.01735 0.01935

As percentage of gðtÞ ¼ t 49.60 62.70 76.68 100.00 110.73 123.51

% of cases abs. dev. lower

than gðtÞ ¼ t
75.68 75.68 72.97 48.65 37.84

Sum of ranks � 614/89 618/85 551/152 327/376 257/446

This table reports different measures of the performance of 30 immunization strategies over 37 horizons of

four years in the period 1950–1990. Each strategy is a result of combining a functional form of gðtÞ with a

generalized M-vector length (Q). Sum of ranks � gives the sum of the ranks of the negative differences

between the absolute deviations yielded by each strategy and those of the classic M-vector strategy and the

sum of the ranks of the positive differences between both series. Asterisks accompanying the % of cases

each strategy absolute deviation is lower than that of gðtÞ ¼ t indicate that the strategy performs statistically

different from the classic M-vector strategy at 1% (**) or 5% (*) levels by means of a sign test on absolute

deviations. Asterisks accompanying the Sum of ranks � indicate that the strategy performs statistically

different from the M-vector strategy at the preceding significance levels by means of a Wilcoxon test on

absolute deviations.
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Table 6

Immunization performance of the generalized M-vector model with gðtÞ ¼ ta over five-year horizons

Variable gðtÞ ¼ t0:25 gðtÞ ¼ t0:5 gðtÞ ¼ t0:75 gðtÞ ¼ t gðtÞ ¼ t1:25 gðtÞ ¼ t1:5

Panel A: Q ¼ 1

Sum of absolute

deviations

0.45171 0.37355 0.38753 0.44478 0.53424 0.63071

As percentage of gðtÞ ¼ t 101.56 83.98 87.13 100.00 120.11 141.80

% of cases abs. dev.

lower than gðtÞ ¼ t
55.56 61.11 63.89 27.78 27.78

Sum of ranks � 370/296 431/235 442/224 147/519 136/530

Panel B: Q ¼ 2

Sum of absolute

deviations

0.09296 0.10417 0.11310 0.12734 0.16357 0.22010

As percentage of gðtÞ ¼ t 73.00 81.80 88.81 100.00 128.45 172.84

% of cases abs. dev.

lower than gðtÞ ¼ t
47.22 58.33 58.33 30.56 30.56

Sum of ranks � 396/270 398/268 416/250 184/482 145/521

Panel C: Q ¼ 3

Sum of absolute

deviations

0.04194 0.04828 0.05596 0.06111 0.07588 0.10289

As percentage of gðtÞ ¼ t 68.63 79.00 91.57 100.00 124.18 168.37

% of cases abs. dev.

lower than gðtÞ ¼ t
61.11 66.67 58.33 41.67 33.33

Sum of ranks � 429/237 434/232 392/274 201/465 155/511

Panel D: Q ¼ 4

Sum of absolute

deviations

0.03021 0.02831 0.02651 0.02734 0.03610 0.04814

As percentage of gðtÞ ¼ t 110.53 103.58 96.99 100.00 132.06 176.11

% of cases abs. dev.

lower than gðtÞ ¼ t
55.56 50.00 52.78 38.89 33.33

Sum of ranks � 329/337 321/345 365/301 194/472 176/490

Panel E: Q ¼ 5

Sum of absolute

deviations

0.01456 0.01574 0.01683 0.01736 0.01624 0.01795

As percentage of gðtÞ ¼ t 83.88 90.67 96.95 100.00 93.52 103.38

% of cases abs. dev.

lower than gðtÞ ¼ t
66.67 63.89 52.78 61.11 47.22

Sum of ranks � 449/217 414/252 367/299 395/271 298/368

This table reports different measures of the performance of 30 immunization strategies over 36 horizons of

five years in the period 1950–1990. Each strategy is a result of combining a functional form of gðtÞ with a

generalized M-vector length (Q). Sum of ranks � gives the sum of the ranks of the negative differences

between the absolute deviations yielded by each strategy and those of the classic M-vector strategy and the

sum of the ranks of the positive differences between both series. Asterisks accompanying the % of cases

each strategy absolute deviation is lower than that of gðtÞ ¼ t indicate that the strategy performs statistically

different from the classic M-vector strategy at 1% (**) or 5% (*) levels by means of a sign test on absolute

deviations. Asterisks accompanying the Sum of ranks � indicate that the strategy performs statistically

different from the M-vector strategy at the preceding significance levels by means of a Wilcoxon test on

absolute deviations.
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a lower than 1, though the evidence becomes weaker as the horizon is lengthened.

For a two-year horizon we find significant improvement in immunization perfor-

mance for Q ¼ 3, 4, and 5 (see Table 3); for a three-year horizon we find significant

improvement in immunization performance for Q ¼ 2, 4, and 5 (see Table 4); for a

four-year horizon we find significant improvement in immunization performance for
Q ¼ 5 (see Table 5); and finally for a five-year horizon we do not find significant im-

provement in immunization performance for any Q (see Table 6) even though the

magnitude of absolute deviations is lower for M-vector strategies with a lower than

1. 13

Even for the cases when we find no statistical evidence of improvement in immu-

nization performance, we find not a single instance when a generalized M-vector

strategy with a lower than 1, performs significantly worse than the classic M-vector

strategy. On the other hand, we find that all generalized M-vector strategies with a
greater than 1 perform significantly worse than the classic M-vector strategy at all

horizons, with only a few exceptions where statistical significance is not found (the

exceptions occur at longer horizons and for higher values of Q).

Apart from these results, it should be noted that our choice of a polynomial func-

tion does not imply that this was the most optimal function for immunization. We

also tested some other functions including Vasicek (1977) bond volatility function

with different values of mean reversion and the natural log function. Except for

the log function, other functions did not lead to immunization performance similar
or better than that of the polynomial functions with low a. 14

The results of immunization performance of the gðtÞ ¼ logðtÞ model are shown in

Table 7. The model performs very similar to the low a polynomial models, with sig-

nificant gains in the immunization performance over short horizons and for values of

Q greater than 2. The log function also satisfies the constraints on the first two de-

rivatives of gðtÞ with respect to the term to maturity stated at the end of Section 2.

The results related to the log model suggest that there may be other functional forms

of gðtÞ that may lead to further improvements in immunization performance. How-
ever, we leave this task for future research in this area.

One unresolved question that still remains is why lower a strategies fail to outper-

form the classic M-vector strategy over longer planning horizons (i.e., H ¼ 5 or more

years). Though we do not have a convincing argument that explains this result, it

should be noted that as the portfolios are rebalanced more often over a longer ho-

rizon, some of the immunization errors cancel out due to time diversification effects

(positive errors are cancelled out with negative errors as the portfolio is rebalanced

every year).
We investigate another possible explanation of the dependence of the immuniza-

tion performance on the length of the planning horizon, based on a previous find-

ing in the immunization literature on ‘‘portfolio design’’. Fig. 1 shows the average

13 This remains true for even longer planning horizons of H ¼ 6 and 7. These results can be obtained

from the authors upon request.
14 The results of immunization performance using the other functions can be obtained from the authors

upon request. We are indebted to a referee for suggesting the log function.
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Table 7

Immunization performance of the generalized M-vector model with gðtÞ ¼ logðtÞ
Variable 1-year

horizons

2-year

horizons

3-year

horizons

4-year

horizons

5-year

horizons

6-year

horizons

Panel A: Q ¼ 1

Sum of absolute

deviations

0.39272 0.44267 0.52411 0.55351 0.57230 0.58189

As percentage of gðtÞ ¼ t 148.26 158.54 146.80 132.13 128.67 130.30

% of cases abs. dev. lower

than gðtÞ ¼ t
47.50 41.03 44.74 54.05 52.78 45.71

Sum of ranks � 308/512 257/523 303/438 318/385 311/355 283/347

Panel B: Q ¼ 2

Sum of absolute

deviations

0.06133 0.08809 0.08754 0.11464 0.10831 0.13340

As percentage of gðtÞ ¼ t 67.34 91.50 71.05 96.87 85.05 95.93

% of cases abs. dev. lower

than gðtÞ ¼ t
47.50 51.28 60.53 51.35 61.11 57.14

Sum of ranks � 514/306 386/394 518/223 392/311 389/277 341/289

Panel C: Q ¼ 3

Sum of absolute

deviations

0.01087 0.02219 0.04381 0.03610 0.04037 0.05238

As percentage of gðtÞ ¼ t 31.00 50.34 87.28 64.67 66.07 84.22

% of cases abs. dev. lower

than gðtÞ ¼ t
80.00 71.79 63.16 56.76 52.78 48.57

Sum of ranks � 740/80 617/163 419/322 469/234 415/251 336/294

Panel D: Q ¼ 4

Sum of absolute

deviations

0.00139 0.00443 0.01867 0.02915 0.02954 0.03762

As percentage of gðtÞ ¼ t 9.09 26.72 62.94 131.20 108.07 102.19

% of cases abs. dev. lower

than gðtÞ ¼ t
100.00 79.49 73.68 48.65 52.78 51.43

Sum of ranks � 820/0 643/137 576/165 300/403 344/322 299/331

Panel E: Q ¼ 5

Sum of absolute

deviations

0.00004 0.00025 0.00202 0.00668 0.01230 0.01827

As percentage of gðtÞ ¼ t 2.44 7.54 24.20 42.61 70.83 110.07

% of cases abs. dev. lower

than gðtÞ ¼ t
100.00 100.00 92.11 81.08 63.89 54.29

Sum of ranks � 820/0 780/0 695/46 632/71 480/186 348/282

This table reports different measures of the performance of the generalized M-vector model with

gðtÞ ¼ logðtÞ over horizons of different length in the period 1950–1990. Sum of ranks � gives the sum of

the ranks of the negative differences between the absolute deviations yielded by each strategy and those of

the classic M-vector strategy and the sum of the ranks of the positive differences between both series.

Asterisks accompanying the % of cases each strategy absolute deviation is lower than that of gðtÞ ¼ t
indicate that the strategy performs statistically different from the classic M-vector strategy at 1% (**) or

5% (*) levels by means of a sign test on absolute deviations. Asterisks accompanying the Sum of ranks �
indicate that the strategy performs statistically different from the M-vector strategy at the preceding

significance levels by means of a Wilcoxon test on absolute deviations.
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Fig. 1. Average investment in maturity bonds along the planning horizon.
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investment in maturity bonds 15 (that is, the bonds which mature at the end of the

horizon) along the planning horizon for different horizon lengths ranging from

one to six years. In each of the six graphs, a specific line shows the investment in ma-

turity bonds across models with different values of a for a given value of Q, and dif-

ferent lines denote different values of Q.
Inspection of these graphs reveals that lower a models select a higher proportion

of bonds with maturities at the end of the horizon. However, this assertion weakens

as the length of the horizon increases such that for long horizons of five and six years

the differences between models are nearly insignificant. Coincidentally, the log model

behaves very similar to the polynomial model with a ¼ 0:25, and so it allows us to

plot it right next to this model. The pattern of immunization performance across

models and horizon lengths is consistent with these graphs and corroborates the find-

ings of Fooladi and Roberts (1992) and Bierwag et al. (1993) about the role of port-
folio design in immunization performance.

4. Conclusions

This study is motivated by the need for improving interest rate hedging perfor-

mance using finite length vectors of risk measures. While empirical studies have

shown that the traditional duration vector models including the M-square model
and the M-vector model offer good immunization performance, generalized M-

vector models may lead to faster convergence of the true bond return function

and therefore provide better immunization performance.

We have tested this hypothesis on generalized M-vector models corresponding to

a class of polynomial functional forms given as gðtÞ ¼ ta where the value of a ranges

from 0.25 to 1.5. Our empirical tests confirm that immunization results improve sig-

nificantly for models gðtÞ ¼ ta with a between 0 and 1, when higher-order generalized

M-vectors are used with short horizons (possibly due to infrequent portfolio rebal-
ancing). Among other generalized M-vector models corresponding to different func-

tional forms of gðtÞ, we found logðtÞ function to perform as well as the lower

a polynomial models. The pattern of immunization performance across models

and horizon lengths corroborates the findings of Fooladi and Roberts (1992) and

Bierwag et al. (1993) about the role of maturity bonds in improving immunization

performance.

The primary implication of our paper for bond portfolio management is that risk

management may be improved by utilizing generalized M-vectors models. Applica-
tions would include short-term hedging, immunization over short planning horizons,

and bond index replication.

15 Since portfolios usually include short sales in bonds different from the maturity bonds, the investment

in maturity bonds is defined as the portion of the sum of the squared bond weights (see Eq. (14)) which

corresponds to bonds that mature at the end of the planning horizon.
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